
What comes before Linux…
or BSD, Windows, macOS, Haiku, Oberon, Plan 9, …?

Daniel Maslowski aka CyReVolt



Hello, I am Daniel aka CyReVolt :‑)
Work and education

IT security and computer science
software engineering
infrastructure and web
apps, UIs, ecommerce

Open Source contributions
hardware and firmware
operating systems
software distributions
reverse engineering

I created Fiedka the firmware editor (https://fiedka.app) and
started the Platform System Interface project:
https://github.com/platform‑system‑interface/

https://fiedka.app
https://github.com/platform-system-interface/


Hello, I am Daniel aka CyReVolt :‑)
Work and education

IT security and computer science
software engineering
infrastructure and web
apps, UIs, ecommerce

Open Source contributions
hardware and firmware
operating systems
software distributions
reverse engineering

I created Fiedka the firmware editor (https://fiedka.app) and
started the Platform System Interface project:
https://github.com/platform‑system‑interface/

https://fiedka.app
https://github.com/platform-system-interface/


Agenda

Bootloaders and Firmware
Classification, Scopes and Goals
Projects
Platform Ownership



Bootloaders and Firmware



What is a Bootloader?

A bootloader is an application that loads and executes another application.
target application may rely
on a specific protocol
often configurable via files or
customizable at build time
can offer an interactive menu,
e.g. for switching OSs
well‑known examples

▶ GRUB
▶ sd‑boot
▶ U‑Boot (proper)

image source: https://github.com/hartwork/grub2‑theme‑preview

https://github.com/hartwork/grub2-theme-preview


What is a Bootloader?

A bootloader is an application that loads and executes another application.

target application may rely
on a specific protocol
often configurable via files or
customizable at build time
can offer an interactive menu,
e.g. for switching OSs
well‑known examples

▶ GRUB
▶ sd‑boot
▶ U‑Boot (proper)

image source: https://github.com/hartwork/grub2‑theme‑preview

https://github.com/hartwork/grub2-theme-preview


What is a Bootloader?

A bootloader is an application that loads and executes another application.
target application may rely
on a specific protocol
often configurable via files or
customizable at build time
can offer an interactive menu,
e.g. for switching OSs
well‑known examples

▶ GRUB
▶ sd‑boot
▶ U‑Boot (proper)

image source: https://github.com/hartwork/grub2‑theme‑preview

https://github.com/hartwork/grub2-theme-preview


Between Firmware and OS

Platform Initialization
aka firmware

SoC
clocks
GPIOs
DRAM controller

Bootloader
today’s topic

needs flexibility
fetches OS kernel
checks for integrity
maybe interactive menu

Operating System
Linux
FreeBSD
Plan 9
Oberon
Haiku
…



Between Firmware and OS

Platform Initialization
aka firmware

SoC
clocks
GPIOs
DRAM controller

Bootloader
today’s topic

needs flexibility
fetches OS kernel
checks for integrity
maybe interactive menu

Operating System
Linux
FreeBSD
Plan 9
Oberon
Haiku
…



Drivers, Parsers, Loaders

Drivers
talk to hardware, e.g.,
graphics output
abstract concepts,
e.g., file systems
may be provided by
environment, such as
UEFI DXE or Linux

Parsers
understand data
formats
translate raw data
to a usable form
for configuration
files and binaries

Loaders
potentially pick up
configuration
load application to
memory
place additional data
in memory and/or
registers

Eventually, tell the platform (“CPU”) to execute from a specific memory
address.

See also my talk on webboot:

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw


Drivers, Parsers, Loaders
Drivers

talk to hardware, e.g.,
graphics output
abstract concepts,
e.g., file systems
may be provided by
environment, such as
UEFI DXE or Linux

Parsers
understand data
formats
translate raw data
to a usable form
for configuration
files and binaries

Loaders
potentially pick up
configuration
load application to
memory
place additional data
in memory and/or
registers

Eventually, tell the platform (“CPU”) to execute from a specific memory
address.

See also my talk on webboot:

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw


Drivers, Parsers, Loaders
Drivers

talk to hardware, e.g.,
graphics output
abstract concepts,
e.g., file systems
may be provided by
environment, such as
UEFI DXE or Linux

Parsers
understand data
formats
translate raw data
to a usable form
for configuration
files and binaries

Loaders
potentially pick up
configuration
load application to
memory
place additional data
in memory and/or
registers

Eventually, tell the platform (“CPU”) to execute from a specific memory
address.

See also my talk on webboot:

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw


Drivers, Parsers, Loaders
Drivers

talk to hardware, e.g.,
graphics output
abstract concepts,
e.g., file systems
may be provided by
environment, such as
UEFI DXE or Linux

Parsers
understand data
formats
translate raw data
to a usable form
for configuration
files and binaries

Loaders
potentially pick up
configuration
load application to
memory
place additional data
in memory and/or
registers

Eventually, tell the platform (“CPU”) to execute from a specific memory
address.

See also my talk on webboot:

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw


Drivers, Parsers, Loaders
Drivers

talk to hardware, e.g.,
graphics output
abstract concepts,
e.g., file systems
may be provided by
environment, such as
UEFI DXE or Linux

Parsers
understand data
formats
translate raw data
to a usable form
for configuration
files and binaries

Loaders
potentially pick up
configuration
load application to
memory
place additional data
in memory and/or
registers

Eventually, tell the platform (“CPU”) to execute from a specific memory
address.

See also my talk on webboot:

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw


Drivers, Parsers, Loaders
Drivers

talk to hardware, e.g.,
graphics output
abstract concepts,
e.g., file systems
may be provided by
environment, such as
UEFI DXE or Linux

Parsers
understand data
formats
translate raw data
to a usable form
for configuration
files and binaries

Loaders
potentially pick up
configuration
load application to
memory
place additional data
in memory and/or
registers

Eventually, tell the platform (“CPU”) to execute from a specific memory
address.

See also my talk on webboot:

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw

https://programm.froscon.org/2021/events/2703.html
https://av.tib.eu/media/59579
https://www.youtube.com/watch?v=nZgRV7gvZRw


Security Insights

Firmware is well known to be an attack surface.
Incidents increase:

OEM compromise (e.g., MSI)
vulnerabilities in firmware interfaces, such as

▶ UEFI, e.g. Option ROMsa, parsing variablesb
▶ ACPI WPBT (Windows Platform Binary Table)c
▶ LogoFAILd, PixieFaile, …

ahttps://uefi.org/sites/default/files/resources/UEFI%20Firmware
%20‑%20Security%20Concerns%20and%20Best%20Practices.pdf

bhttps://www.binarly.io/advisories/BRLY‑2021‑007/index.html
chttps://eclypsium.com/research/everyone‑gets‑a‑rootkit/
dhttps://binarly.io/posts/finding_logofail_the_dangers_of_image

_parsing_during_system_boot/
ehttps://blog.quarkslab.com/pixiefail‑nine‑vulnerabilities‑in‑

tianocores‑edk‑ii‑ipv6‑network‑stack.html

https://blogs.gnome.org/hughsie/2023/05/09/msi-and-insecure-kms/
https://uefi.org/sites/default/files/resources/UEFI%20Firmware%20-%20Security%20Concerns%20and%20Best%20Practices.pdf
https://uefi.org/sites/default/files/resources/UEFI%20Firmware%20-%20Security%20Concerns%20and%20Best%20Practices.pdf
https://www.binarly.io/advisories/BRLY-2021-007/index.html
https://eclypsium.com/research/everyone-gets-a-rootkit/
https://binarly.io/posts/finding_logofail_the_dangers_of_image_parsing_during_system_boot/
https://binarly.io/posts/finding_logofail_the_dangers_of_image_parsing_during_system_boot/
https://blog.quarkslab.com/pixiefail-nine-vulnerabilities-in-tianocores-edk-ii-ipv6-network-stack.html
https://blog.quarkslab.com/pixiefail-nine-vulnerabilities-in-tianocores-edk-ii-ipv6-network-stack.html


Security Insights

Firmware is well known to be an attack surface.

Incidents increase:
OEM compromise (e.g., MSI)
vulnerabilities in firmware interfaces, such as

▶ UEFI, e.g. Option ROMsa, parsing variablesb
▶ ACPI WPBT (Windows Platform Binary Table)c
▶ LogoFAILd, PixieFaile, …

ahttps://uefi.org/sites/default/files/resources/UEFI%20Firmware
%20‑%20Security%20Concerns%20and%20Best%20Practices.pdf

bhttps://www.binarly.io/advisories/BRLY‑2021‑007/index.html
chttps://eclypsium.com/research/everyone‑gets‑a‑rootkit/
dhttps://binarly.io/posts/finding_logofail_the_dangers_of_image

_parsing_during_system_boot/
ehttps://blog.quarkslab.com/pixiefail‑nine‑vulnerabilities‑in‑

tianocores‑edk‑ii‑ipv6‑network‑stack.html

https://blogs.gnome.org/hughsie/2023/05/09/msi-and-insecure-kms/
https://uefi.org/sites/default/files/resources/UEFI%20Firmware%20-%20Security%20Concerns%20and%20Best%20Practices.pdf
https://uefi.org/sites/default/files/resources/UEFI%20Firmware%20-%20Security%20Concerns%20and%20Best%20Practices.pdf
https://www.binarly.io/advisories/BRLY-2021-007/index.html
https://eclypsium.com/research/everyone-gets-a-rootkit/
https://binarly.io/posts/finding_logofail_the_dangers_of_image_parsing_during_system_boot/
https://binarly.io/posts/finding_logofail_the_dangers_of_image_parsing_during_system_boot/
https://blog.quarkslab.com/pixiefail-nine-vulnerabilities-in-tianocores-edk-ii-ipv6-network-stack.html
https://blog.quarkslab.com/pixiefail-nine-vulnerabilities-in-tianocores-edk-ii-ipv6-network-stack.html


Security Insights

Firmware is well known to be an attack surface.
Incidents increase:

OEM compromise (e.g., MSI)
vulnerabilities in firmware interfaces, such as

▶ UEFI, e.g. Option ROMsa, parsing variablesb
▶ ACPI WPBT (Windows Platform Binary Table)c
▶ LogoFAILd, PixieFaile, …

ahttps://uefi.org/sites/default/files/resources/UEFI%20Firmware
%20‑%20Security%20Concerns%20and%20Best%20Practices.pdf

bhttps://www.binarly.io/advisories/BRLY‑2021‑007/index.html
chttps://eclypsium.com/research/everyone‑gets‑a‑rootkit/
dhttps://binarly.io/posts/finding_logofail_the_dangers_of_image

_parsing_during_system_boot/
ehttps://blog.quarkslab.com/pixiefail‑nine‑vulnerabilities‑in‑

tianocores‑edk‑ii‑ipv6‑network‑stack.html

https://blogs.gnome.org/hughsie/2023/05/09/msi-and-insecure-kms/
https://uefi.org/sites/default/files/resources/UEFI%20Firmware%20-%20Security%20Concerns%20and%20Best%20Practices.pdf
https://uefi.org/sites/default/files/resources/UEFI%20Firmware%20-%20Security%20Concerns%20and%20Best%20Practices.pdf
https://www.binarly.io/advisories/BRLY-2021-007/index.html
https://eclypsium.com/research/everyone-gets-a-rootkit/
https://binarly.io/posts/finding_logofail_the_dangers_of_image_parsing_during_system_boot/
https://binarly.io/posts/finding_logofail_the_dangers_of_image_parsing_during_system_boot/
https://blog.quarkslab.com/pixiefail-nine-vulnerabilities-in-tianocores-edk-ii-ipv6-network-stack.html
https://blog.quarkslab.com/pixiefail-nine-vulnerabilities-in-tianocores-edk-ii-ipv6-network-stack.html


It really works

https://www.youtube.com/watch?v=X2X18h5Hnfk

https://www.youtube.com/watch?v=X2X18h5Hnfk


Classification, Scopes and Goals



Interactive vs non‑interactive

Non‑interactive
Simple devices need no interaction in the bootloader, e.g., wristbands.
Settings and upgrade functionality may come from other devices, such as
phones.

Interactive
Flexible devices are designed to run custom operating systems and software.
Security note: Runtime configurability leaves space for vulnerabilities.
Offer a rich user interface to

change settings
set up a trust anchor
enjoy colorful graphics

For more, see my talk on firmware settings andmenus1.

1https://archive.fosdem.org/2022/schedule/event/fw_settings_and_menus/

https://archive.fosdem.org/2022/schedule/event/fw_settings_and_menus/


Interactive vs non‑interactive

Non‑interactive
Simple devices need no interaction in the bootloader, e.g., wristbands.
Settings and upgrade functionality may come from other devices, such as
phones.

Interactive
Flexible devices are designed to run custom operating systems and software.
Security note: Runtime configurability leaves space for vulnerabilities.
Offer a rich user interface to

change settings
set up a trust anchor
enjoy colorful graphics

For more, see my talk on firmware settings andmenus1.

1https://archive.fosdem.org/2022/schedule/event/fw_settings_and_menus/

https://archive.fosdem.org/2022/schedule/event/fw_settings_and_menus/


Interactive vs non‑interactive

Non‑interactive
Simple devices need no interaction in the bootloader, e.g., wristbands.
Settings and upgrade functionality may come from other devices, such as
phones.

Interactive
Flexible devices are designed to run custom operating systems and software.
Security note: Runtime configurability leaves space for vulnerabilities.
Offer a rich user interface to

change settings
set up a trust anchor
enjoy colorful graphics

For more, see my talk on firmware settings andmenus1.

1https://archive.fosdem.org/2022/schedule/event/fw_settings_and_menus/

https://archive.fosdem.org/2022/schedule/event/fw_settings_and_menus/


Interactive vs non‑interactive

Non‑interactive
Simple devices need no interaction in the bootloader, e.g., wristbands.
Settings and upgrade functionality may come from other devices, such as
phones.

Interactive
Flexible devices are designed to run custom operating systems and software.
Security note: Runtime configurability leaves space for vulnerabilities.
Offer a rich user interface to

change settings
set up a trust anchor
enjoy colorful graphics

For more, see my talk on firmware settings andmenus1.

1https://archive.fosdem.org/2022/schedule/event/fw_settings_and_menus/

https://archive.fosdem.org/2022/schedule/event/fw_settings_and_menus/


Applications

General purpose
General purpose bootloaders can be hard to customize.
Design them to be clear to end users for distribution and integration.

Special purpose
Special purpose bootloaders often need to be tailored2 toward a single use
case. With a clear execution flow, it is easier to understand their behavior.

2https://danielmangum.com/posts/risc‑v‑bytes‑exploring‑custom‑esp32‑bootloader/

https://danielmangum.com/posts/risc-v-bytes-exploring-custom-esp32-bootloader/


Applications

General purpose
General purpose bootloaders can be hard to customize.
Design them to be clear to end users for distribution and integration.

Special purpose
Special purpose bootloaders often need to be tailored2 toward a single use
case. With a clear execution flow, it is easier to understand their behavior.

2https://danielmangum.com/posts/risc‑v‑bytes‑exploring‑custom‑esp32‑bootloader/

https://danielmangum.com/posts/risc-v-bytes-exploring-custom-esp32-bootloader/


Applications

General purpose
General purpose bootloaders can be hard to customize.
Design them to be clear to end users for distribution and integration.

Special purpose
Special purpose bootloaders often need to be tailored2 toward a single use
case. With a clear execution flow, it is easier to understand their behavior.

2https://danielmangum.com/posts/risc‑v‑bytes‑exploring‑custom‑esp32‑bootloader/

https://danielmangum.com/posts/risc-v-bytes-exploring-custom-esp32-bootloader/


Where it really starts

Typical SoCs have early code in their mask ROM, sometimes also called
BROM (boot ROM) or ZSBL (Zero Stage Boot Loader).

Boot ROMsmay offer protocols for loading over serial or USB ports, which is
great for development, e.g., Allwinner FEL, JH71x0 XMODEM.

Depending on the hardware design, multiple further stages are necessary.

General flow: firmware ‑> bootloader ‑> OS

Customizing code from the beginning requires a concept of ownership.



Where it really starts

Typical SoCs have early code in their mask ROM, sometimes also called
BROM (boot ROM) or ZSBL (Zero Stage Boot Loader).

Boot ROMsmay offer protocols for loading over serial or USB ports, which is
great for development, e.g., Allwinner FEL, JH71x0 XMODEM.

Depending on the hardware design, multiple further stages are necessary.

General flow: firmware ‑> bootloader ‑> OS

Customizing code from the beginning requires a concept of ownership.



Where it really starts

Typical SoCs have early code in their mask ROM, sometimes also called
BROM (boot ROM) or ZSBL (Zero Stage Boot Loader).

Boot ROMsmay offer protocols for loading over serial or USB ports, which is
great for development, e.g., Allwinner FEL, JH71x0 XMODEM.

Depending on the hardware design, multiple further stages are necessary.

General flow: firmware ‑> bootloader ‑> OS

Customizing code from the beginning requires a concept of ownership.



Where it really starts

Typical SoCs have early code in their mask ROM, sometimes also called
BROM (boot ROM) or ZSBL (Zero Stage Boot Loader).

Boot ROMsmay offer protocols for loading over serial or USB ports, which is
great for development, e.g., Allwinner FEL, JH71x0 XMODEM.

Depending on the hardware design, multiple further stages are necessary.

General flow: firmware ‑> bootloader ‑> OS

Customizing code from the beginning requires a concept of ownership.



Where it really starts

Typical SoCs have early code in their mask ROM, sometimes also called
BROM (boot ROM) or ZSBL (Zero Stage Boot Loader).

Boot ROMsmay offer protocols for loading over serial or USB ports, which is
great for development, e.g., Allwinner FEL, JH71x0 XMODEM.

Depending on the hardware design, multiple further stages are necessary.

General flow: firmware ‑> bootloader ‑> OS

Customizing code from the beginning requires a concept of ownership.



Where it really starts

Typical SoCs have early code in their mask ROM, sometimes also called
BROM (boot ROM) or ZSBL (Zero Stage Boot Loader).

Boot ROMsmay offer protocols for loading over serial or USB ports, which is
great for development, e.g., Allwinner FEL, JH71x0 XMODEM.

Depending on the hardware design, multiple further stages are necessary.

General flow: firmware ‑> bootloader ‑> OS

Customizing code from the beginning requires a concept of ownership.



Early init: Silicon and DRAM

A bootloader for a rich OS relies on DRAM being initialized.

Project Mu, Tianocore EDK2 (UEFI)
▶ SEC+PEI

coreboot
▶ CAR and ROM stages

oreboot
▶ bt0 stage

U‑Boot
▶ SPL, rarely TPL

Note: Documentation on DRAM controllers is very sparse.
Chip vendors rarely describe how initial parts of their platforms work.



Early init: Silicon and DRAM

A bootloader for a rich OS relies on DRAM being initialized.

Project Mu, Tianocore EDK2 (UEFI)
▶ SEC+PEI

coreboot
▶ CAR and ROM stages

oreboot
▶ bt0 stage

U‑Boot
▶ SPL, rarely TPL

Note: Documentation on DRAM controllers is very sparse.
Chip vendors rarely describe how initial parts of their platforms work.



Early init: Silicon and DRAM

A bootloader for a rich OS relies on DRAM being initialized.

Project Mu, Tianocore EDK2 (UEFI)
▶ SEC+PEI

coreboot
▶ CAR and ROM stages

oreboot
▶ bt0 stage

U‑Boot
▶ SPL, rarely TPL

Note: Documentation on DRAM controllers is very sparse.
Chip vendors rarely describe how initial parts of their platforms work.



Early init: Silicon and DRAM

A bootloader for a rich OS relies on DRAM being initialized.

Project Mu, Tianocore EDK2 (UEFI)
▶ SEC+PEI

coreboot
▶ CAR and ROM stages

oreboot
▶ bt0 stage

U‑Boot
▶ SPL, rarely TPL

Note: Documentation on DRAM controllers is very sparse.
Chip vendors rarely describe how initial parts of their platforms work.



Tools for Development and Flashing

During development, or for customization, tools are necessary to reprogram
a device and check/change its OTP (one‑time programmable) configuration.

Boot ROM / Loader Tools
Allwinner: sunxi-fel, xfel, aw-fel-cli
Rockchip: rkflashtool, rkdeveloptool
Amlogic: pyamlboot, aml_boot
NXP: uuu, imx_usb_loader
StarFive JH7110: vf2-loader
Android: fastboot (details vary per vendor)
snagboot (multitool)

Provided by Bootloader
U‑Boot sf command
Linux MTD (memory technology device) drivers



Tools for Development and Flashing

During development, or for customization, tools are necessary to reprogram
a device and check/change its OTP (one‑time programmable) configuration.

Boot ROM / Loader Tools
Allwinner: sunxi-fel, xfel, aw-fel-cli
Rockchip: rkflashtool, rkdeveloptool
Amlogic: pyamlboot, aml_boot
NXP: uuu, imx_usb_loader
StarFive JH7110: vf2-loader
Android: fastboot (details vary per vendor)
snagboot (multitool)

Provided by Bootloader
U‑Boot sf command
Linux MTD (memory technology device) drivers



Tools for Development and Flashing

During development, or for customization, tools are necessary to reprogram
a device and check/change its OTP (one‑time programmable) configuration.

Boot ROM / Loader Tools
Allwinner: sunxi-fel, xfel, aw-fel-cli
Rockchip: rkflashtool, rkdeveloptool
Amlogic: pyamlboot, aml_boot
NXP: uuu, imx_usb_loader
StarFive JH7110: vf2-loader
Android: fastboot (details vary per vendor)
snagboot (multitool)

Provided by Bootloader
U‑Boot sf command
Linux MTD (memory technology device) drivers



Tools for Development and Flashing

During development, or for customization, tools are necessary to reprogram
a device and check/change its OTP (one‑time programmable) configuration.

Boot ROM / Loader Tools
Allwinner: sunxi-fel, xfel, aw-fel-cli
Rockchip: rkflashtool, rkdeveloptool
Amlogic: pyamlboot, aml_boot
NXP: uuu, imx_usb_loader
StarFive JH7110: vf2-loader
Android: fastboot (details vary per vendor)
snagboot (multitool)

Provided by Bootloader
U‑Boot sf command
Linux MTD (memory technology device) drivers



Projects



Tianocore EDK2 / UEFI

DXE and BDS are
effectively the UEFI
bootloader, can be
replaced with Linux.

Real devices usually
come with OEM
controlled
environments.

See also
“BIOSmodding”.



Tianocore EDK2 / UEFI

DXE and BDS are
effectively the UEFI
bootloader, can be
replaced with Linux.

Real devices usually
come with OEM
controlled
environments.

See also
“BIOSmodding”.



Tianocore EDK2 / UEFI

DXE and BDS are
effectively the UEFI
bootloader, can be
replaced with Linux.

Real devices usually
come with OEM
controlled
environments.

See also
“BIOSmodding”.



U‑Boot

U‑Boot offers a rich environment with an interactive shell andmany boot
options.

supports multiple architectures
more than 1000 boards, such as SBCs and routers
can directly boot Linux andmany other payloads

See also:

State of the U‑Boot, 2017 ‑ Thomas Rini
https://www.youtube.com/watch?v=dKBUSMa6oZI
Implementing State‑of‑the‑Art U‑Boot Port, 2018 Edition ‑ Marek Vasut
https://www.youtube.com/watch?v=rJtlAi8rxgs

https://www.youtube.com/watch?v=dKBUSMa6oZI
https://www.youtube.com/watch?v=rJtlAi8rxgs


U‑Boot

U‑Boot offers a rich environment with an interactive shell andmany boot
options.

supports multiple architectures
more than 1000 boards, such as SBCs and routers
can directly boot Linux andmany other payloads

See also:

State of the U‑Boot, 2017 ‑ Thomas Rini
https://www.youtube.com/watch?v=dKBUSMa6oZI
Implementing State‑of‑the‑Art U‑Boot Port, 2018 Edition ‑ Marek Vasut
https://www.youtube.com/watch?v=rJtlAi8rxgs

https://www.youtube.com/watch?v=dKBUSMa6oZI
https://www.youtube.com/watch?v=rJtlAi8rxgs


U‑Boot

U‑Boot offers a rich environment with an interactive shell andmany boot
options.

supports multiple architectures
more than 1000 boards, such as SBCs and routers
can directly boot Linux andmany other payloads

See also:

State of the U‑Boot, 2017 ‑ Thomas Rini
https://www.youtube.com/watch?v=dKBUSMa6oZI
Implementing State‑of‑the‑Art U‑Boot Port, 2018 Edition ‑ Marek Vasut
https://www.youtube.com/watch?v=rJtlAi8rxgs

https://www.youtube.com/watch?v=dKBUSMa6oZI
https://www.youtube.com/watch?v=rJtlAi8rxgs


oreboot

oreboot is firmware written in Rust.

https://github.com/oreboot

https://github.com/oreboot


LinuxBoot

Linux is a well‑known environment, so finding fitting engineers is easy.

https://linuxboot.org/


Allwinner D1 with oreboot and LinuxBoot

The system boots within seconds. We created environments that allow for
using a D1 as a USB gadget that can be used as an additional CPU for a laptop.



Allwinner D1 with oreboot and LinuxBoot
The system boots within seconds. We created environments that allow for
using a D1 as a USB gadget that can be used as an additional CPU for a laptop.



Allwinner D1 with oreboot and LinuxBoot
The system boots within seconds. We created environments that allow for
using a D1 as a USB gadget that can be used as an additional CPU for a laptop.



FreeBSD

kboot: Booting FreeBSD with LinuxBoot3
FreeBSD’s kboot is a Linux binary that loads FreeBSD’s kernel, mod‑
ules, tuneables and other metadata via the kexec(2) API

3https://www.bsdcan.org/events/bsdcan_2023/schedule/session/138‑kboot‑booting‑
freebsd‑with‑linuxboot/

https://www.bsdcan.org/events/bsdcan_2023/schedule/session/138-kboot-booting-freebsd-with-linuxboot/
https://www.bsdcan.org/events/bsdcan_2023/schedule/session/138-kboot-booting-freebsd-with-linuxboot/


Sooooomany Operating Systems

Howmany do you know?
Windows
Unix (Multics, … AIX, …)
SunOS, Solaris, Illumos…
{Free,Open,Net,DragonFly}BSD
macOS (Darwin, MACH + FreeBSD)
MINIX
xv6
Linux (many distros)
Amoeba (where Python came from)
Oberon (Niklaus Wirth et al)
Plan 9 from Bell Labs, Inferno
beOS, Haiku
FreeRTOS
Zephyr
LiteOS
… toomany to name here :)



Sooooomany Operating Systems
Howmany do you know?

Windows
Unix (Multics, … AIX, …)
SunOS, Solaris, Illumos…
{Free,Open,Net,DragonFly}BSD
macOS (Darwin, MACH + FreeBSD)
MINIX
xv6
Linux (many distros)
Amoeba (where Python came from)
Oberon (Niklaus Wirth et al)
Plan 9 from Bell Labs, Inferno
beOS, Haiku
FreeRTOS
Zephyr
LiteOS
… toomany to name here :)



Sooooomany Operating Systems
Howmany do you know?

Windows
Unix (Multics, … AIX, …)
SunOS, Solaris, Illumos…
{Free,Open,Net,DragonFly}BSD
macOS (Darwin, MACH + FreeBSD)
MINIX
xv6
Linux (many distros)
Amoeba (where Python came from)
Oberon (Niklaus Wirth et al)
Plan 9 from Bell Labs, Inferno
beOS, Haiku
FreeRTOS
Zephyr
LiteOS
… toomany to name here :)



Platform Ownership



Let’s talk!

Full ownership?
locked bootloaders (phones), can sometimes be unlocked
signed firmware (e.g., Intel BootGuard), sometimes misconfigured :‑)
projects (OpenWrt, OpenIPC,…) often replace vendor software partially
control from start allows for more customization, easier development

Sustainability
What do we do with hardware solely made for a cloud based service?

services are being turned off over time
Google Stadia: offered Bluetooth upgrade for controller
Magenta Smart Speaker: now only a Bluetooth speaker
cheap TV boxes and tablets with unmaintained Android
single board computers that rely on community (us!)



Thanks! :)



Follow Me

Daniel Maslowski

https://github.com/orangecms
https://twitter.com/orangecms
https://mastodon.social/@cyrevolt
https://twitch.tv/cyrevolt
https://youtube.com/@cyrevolt

https://metaspora.org/bootloaders‑in‑limbo.pdf

https://www.youtube.com/watch?v=‑Ub8rCMrso0

https://metaspora.org/before‑linux.pdf

License: CC BY 4.0 https://creativecommons.org/licenses/by/4.0/

https://github.com/orangecms
https://twitter.com/orangecms
https://mastodon.social/@cyrevolt
https://twitch.tv/cyrevolt
https://youtube.com/@cyrevolt
https://metaspora.org/bootloaders-in-limbo.pdf
https://www.youtube.com/watch?v=-Ub8rCMrso0
https://metaspora.org/before-linux.pdf
https://creativecommons.org/licenses/by/4.0/

	Bootloaders and Firmware
	Classification, Scopes and Goals
	Projects
	Platform Ownership
	Thanks! :)

